
Chuck Yount, Intel Corporation, chuck.yount@intel.com
with data contributed by
• Alexander Breuer & Josh Tobin, Univ. of CA, San Diego
• Alex Duran, Intel Corporation Iberia, Spain

MS84: Domain-Specific Abstractions for Full-Waveform Inversion
SIAM-CSE, February 27, 2017

Outline

Intel® Xeon Phi™ Processor
� Multi-core package
� New instruction-set architecture
� High-bandwidth on-package memory

Tuning Stencil Code for the Xeon Phi
� Overview of techniques
� Framework for rapid prototyping and tuning

Resources
Summary

2Feb. 27, 2017

4

Intel® Xeon Phi™ Product Family x200
(previously code-named Knights Landing, “KNL”)

Feb. 27, 2017

Host Processor in Groveport Platform
Self-boot Intel® Xeon Phi™ processor

Intel® Xeon Phi™ Processor Intel® Xeon Phi™ Coprocessor x200

with integrated
Intel® Omni-Path Fabric

Ingredient of Grantley & Purley Platforms
Requires Intel® Xeon® processor host

5

Intel® Xeon Phi™ Top500 Listings – Nov 2016

Feb. 27, 2017

Intel Xeon Phi Processors (Knights Landing) now power 5 systems in the top 50:

#5 Cori (NERSC, USA); Cray XC – 14 PFLOPS

#6 Oakforest PACS (JCAHPC, Japan); Fujitsu CX1640 M1 – 13.5 PFLOPS

#12 Marconi (CINECA, Italy); Lenovo – 6.2 PFLOPS

#18 Theta (Argonne National Lab, USA); Cray XC40 – 5.1 PFLOPS

#33 Camphor 2 (ACCMS, Kyoto University, Japan); Cray XC40 – 3.1 PFLOPS

DDR4

Up to 72 cores with 4 hyper-threads each

MCDRAM MCDRAM

MCDRAM MCDRAM

DDR4
TILE:
(up to

36)

Tile IMC (integrated memory controller)EDC (embedded DRAM controller) IIO (integrated I/O controller)

KNL
Package

Enhanced Intel® Atom™ cores based on
Silvermont Microarchitecture

9 2D Mesh Architecture
9 Out-of-Order Cores
9 3X single-thread vs. KNC

ISA
Intel® Xeon® Processor Binary-Compatible (w/Broadwell)
On-package memory
16GiB MCDRAM, ~490 GB/s Stream Triad

Platform Memory
Up to 384GiB DDR4-2400, ~90 GB/s Stream Triad

2VPU

Core

2VPU

Core
1MB
L2

HUB

Bi-directional
tile connections

Feb. 27, 2017 6

KNL Architecture Overview

Feb. 27, 2017

E5-2600
(SNB1)

SSE

AVX

E5-2600v3
(HSW1)

SSE

AVX

AVX2

AVX-512CD

x87/MMX x87/MMX

KNL
(Xeon Phi)

SSE

AVX

AVX2

x87/MMX

AVX-512F

BMI

AVX-512ER

AVX-512PF

BMI

TSX

KNL implements all legacy instructions
• Legacy binary runs w/o recompilation
• KNC binary requires recompilation

KNL introduces AVX-512 Extensions
• 512-bit FP/Integer Vectors
• 32 SIMD registers & 8 mask registers
• Gather/Scatter

Conflict Detection: Improves Vectorization
Prefetch: Gather and Scatter Prefetch
Exponential and Reciprocal Instructions

LE
G

A
C

Y

1. Previous code-names of Intel® Xeon® processors 7

Instruction-Set

Feb. 27, 2017

Cache Model
Ideal for large data size (>16GB)

cache blocking apps

Flat Model
Maximum bandwidth for data

reuse aware apps

Hybrid Model
Maximum flexibility for varied

workloads

Description
Hardware automatically manages the

MCDRAM as a “L3 cache” between CPU
and DDR memory

Manually manage how the app uses
the integrated on-package memory

and DDR for peak perf

Harness the benefits of both Cache and
Flat models by segmenting the
integrated on-package memory

Usage Model

� App and/or data set is very large and
will not fit into MCDRAM

� Unknown or unstructured memory
access behavior

� App or portion of an app or data
set that can be “locked” into
MCDRAM so it doesn’t get flushed
out

� Need to “lock” in a relatively small
portion of an app or data set via the
Flat model

� Remaining MCDRAM is configured as
Cache

DRAM
8 or 4 GB
MCDRAM

8 or 12GB
MCDRAM

Split Options:
25/75%

or
50/50%

8GB/ 16GB
MCDRAM

Up to
384 GB
DRAM

Ph
ys

ic
al

 A
dd

re
ss

DRAM
16GB

MCDRAM

64B cache
lines direct-mapped

1. NUMA = non-uniform memory access

Model configurable at boot time and software exposed through NUMA1

8Feb. 27, 2017

Integrated On-Package Memory Usage Models

Stencil Computation
� Iterative kernels that update elements in one or more N-dimensional tensors using a

fixed pattern of neighboring elements
� Fundamental algorithm in many HPC algorithms and scientific simulations, commonly

used for solving differential equations using finite-difference methods (FDM)

10

Weather Simulation

Seismic Modeling

Image Processing

Images from https://commons.wikimedia.org

Feb. 27, 2017

https://commons.wikimedia.org/

Today’s Code Investment Carries Forward

MKL MPI

TBBOpenMP

Knights Landing Enabled
Performance Libraries & Runtimes

Intel® AVX-512

Cache Mode For
High Bandwidth Memory

Knights Landing Enabled
Compilers

KNL
Enhancements

(memory,
architecture,

bandwidth, etc.)

Exploit NEW
features…

Knights Landing

Parallelization, threading, vectorization,
cache-blocking, MPI+OpenMP

hybridization…

To carry forward most key code modernizations

RECOMPILE
For additional gains

TUNE

11Feb. 27, 2017

What Defined Tools of the trade

Thread
Scaling

Increase concurrent thread
use across coherent shared
memory

OpenMP, TBB, Cilk Plus

Vector
Scaling

Use wide-vector (512-bit)
instructions

Vector loops, vector
functions, array notations

Cache
Blocking

Use algorithms to reduce
memory bandwidth pressure
and improve cache hit rate

Blocking algorithms

Fabric
Scaling

Tune workload to increased
node count MPI

Data
Layout

Optimize data layout for
unconstrained performance

AoSÆSoA, directives for
alignment

X4
Y4

Z4

X3
Y3

Z3

X2
Y2

Z2

X1
Y1

Z1

0
X8
Y8

Z8

X7
Y7

Z7

X6
Y6

Z6

X5
Y5

Z5

X12
Y12

Z12

X11
Y11

Z11

X10
Y10

Z10

X9
Y9

Z9

X16
Y16

Z16

X15
Y15

Z15

X14
Y14

Z14

X13
Y13

Z13

512

1

2

3

4

5

12

What is “Modernized” Code?

Feb. 27, 2017

Thread Scaling for Stencils
Algorithm characteristics
� Threading stencils is often straight-forward within a single grid and time-step

– Many stencils update elements in one grid at a given time-step based only on elements in other
grids or the same grid at previous time-steps

– Some updates across multiple grids may be independent within a time-step
– In these cases, all elements can be updated in parallel trivially

� Threading across multiple dependent grids and time-steps is more challenging
– Requires more complex synchronization to observe dependencies

Techniques
� Example techniques to implement dependent threading include temporal wave-fronts and diamond

tiling
� Threading software

– Older code tends to use multiple single-threaded MPI tasks even on a single node
– Often does not scale well to many threads available on KNL socket (up to 288)
– More modern code uses OpenMP or MPI+OpenMP or MPI w/shared memory on a node
– More advanced threading may include task scheduling to avoid global synchronization

13Feb. 27, 2017

Vector Scaling for Stencils

Algorithm characteristics
� The nature of “stencils” is application of a fixed pattern to multiple elements
� Elements within a grid are usually independent as discussed earlier
� Thus, SIMD vectorization can be applied in a straight-forward manner

Techniques
� Straight-forward vectorization along one dimension often results in many cache-line

reads, many unused elements, and low reuse between vectors
� “Vector-folding” is a technique to vectorize in two or more dimensions, increasing

reuse and thus decreasing memory-bandwidth requirements
– Speed-ups of >1.5x have been observed in several real-world stencils
– See HPCC’15 paper “Vector Folding: improving stencil performance via multi-

dimensional SIMD-vector representation”

14Feb. 27, 2017

X4
Y4

Z4

X3
Y3

Z3

X2
Y2

Z2

X1
Y1

Z1

0
X8
Y8

Z8

X7
Y7

Z7

X6
Y6

Z6

X5
Y5

Z5

X12
Y12

Z12

X11
Y11

Z11

X10
Y10

Z10

X9
Y9

Z9

X16
Y16

Z16

X15
Y15

Z15

X14
Y14

Z14

X13
Y13

Z13

512

Cache Blocking for Stencils
Algorithm characteristics
� Stencil codes are very often memory-bound
� Stencil equations typically input multiple neighboring values (increasing with accuracy)
� These factors make cache-blocking critical for high performance
Techniques
� Most cache-blocking is implemented via simple loop-tiling with each OpenMP thread working on

separate tiles
� Advanced techniques leverage sharing of KNL caches between threads

– Each L1 data cache is shared by 4 hyper-threads in a core
– Each L2 cache is shared by 2 cores in a tile
– Tiles can be sub-divided into slabs or similar partitions, and threads that share these caches can

cooperate within them, increasing reuse and decreasing evictions
� To leverage the MCDRAM cache shared by all cores, an addition level of tiling may be used

– See PMBS’16 paper “Effective Use of Large High-Bandwidth Memory Caches in HPC Stencil
Computation via Temporal Wave-Front Tiling”

� In addition, prefetching data into L1 and/or L2 cache may improve performance

15Feb. 27, 2017

Fabric Scaling for Stencils
Algorithm characteristics
� As with threading and SIMD, independence of solutions within a time-step facilitate

partitioning across nodes
� Access to multiple neighboring values that are common across partitions requires

synchronizing data
Techniques
� Use of “halo” or “ghost” regions is the most common solution to reduce communications

within a time-step as shared data is accessed
– Halos must be exchanged between nodes to keep data consistent
– Application of tiling across time-steps requires more sophisticated exchanges, usually

consisting of exchanging more data but less often
� MPI is the most common software used, but other alternatives are in the works
� Global synchronization can cause under-utilization of nodes on large clusters and/or on

clusters with nodes of heterogeneous performance

16Feb. 27, 2017

Data Layout for Stencils
Algorithm characteristics
� Many problems consist of multi-dimensional domains across multiple grids, which could be

implemented naïvely with a multi-dimensional array-of-structures (AoS)
� Access to many neighboring elements and/or grids may cause translation look-aside buffer

(TLB) pressure when multiple pages are accesses
Techniques
� Structure-of-arrays layout (SoA) is typical for multi-grid problems to enable vectorization
� Options to reduce TLB pressure

– Using huge pages, e.g., via transparent huge pages (THP) in Linux
– Reordering index nesting in grids, e.g., TXYZ Æ XYTZ
– Tiling the layout itself

� To benefit from vector-folding discussed earlier, a data-layout transformation to a grid of
folded vectors is essential

17Feb. 27, 2017

y.a.s.k. � Yet Another Stencil Kernel

A framework to implement and tune stencil code for Intel® Xeon® processors
and Intel® Xeon Phi™ processors and coprocessors
Original impetus
� Tool to evaluate the benefits of vector-folding on multiple stencil kernels
� Expanded to include most of the optimizations described earlier
Goals
� Create high-performing kernel code from a straightforward specification of stencil

equations
� Provide a simple kernel-driver to test stencil performance

– Expose [most] optimization trade-off choices without requiring code changes
– Automate searching through the optimization design space

� Provide ability to integrate code into larger applications

18Feb. 27, 2017

High-Level Flow

19

Optimized stencil
calculation and prefetch

code
Stencil-

specification code
Stencil compiler

Loop compiler

Nested loops with
OpenMP, prefetch code,

etc.

Other C++ code

Intel C++
compiler

Executable
stencil kernel

binary
Performance

results

Loop-specification
code

Feb. 27, 2017

Example 1: Iso3DFD Stencil

� 51-point stencil
� 16th order accurate in space, 2nd order in time
� 61 FP ops

20Feb. 27, 2017

YASK Input Specification for Iso3DFD Stencil
#include "StencilBase.hpp"
class Iso3dfdStencil : public StencilRadiusBase {
protected:

Grid pressure; // time-varying 3D pressure grid.
Grid vel; // constant 3D vel grid.
Param coeff; // stencil coefficients.

public:
Iso3dfdStencil(StencilList& stencils, int radius=8) :

StencilRadiusBase("iso3dfd", stencils, radius) {
INIT_GRID_4D(pressure, t, x, y, z);
INIT_GRID_3D(vel, x, y, z);
INIT_PARAM_1D(coeff, r, radius + 1); }

virtual void define(const IntTuple& offsets) {
GET_OFFSET(t); GET_OFFSET(x); GET_OFFSET(y); GET_OFFSET(z);
GridValue np = pressure(t, x, y, z) * coeff(0);
for (int r = 1; r <= _radius; r++) {

np += coeff(r) *
(pressure(t, x-r, y, z) + pressure(t, x+r, y, z) +
pressure(t, x, y-r, z) + pressure(t, x, y+r, z) +
pressure(t, x, y, z-r) + pressure(t, x, y, z+r)); }

np = (2.0 * pressure(t, x, y, z))
- pressure(t-1, x, y, z) // subtract pressure at t-1.
+ (np * vel(x, y, z)); // add velocity term.

pressure(t+1, x, y, z) IS_EQUIV_TO v;
}

};

21

Declare grids and
coefficient array

Define equation for
pressure at t+1

Feb. 27, 2017

Example: 2D “4x4” vector folding

22

y

x

Logical indices in 2D

Layout in memory (1D)

5,1 5,2 5,3 5,4 5,5 … 5,8 5,9 …
4,1 4,2 4,3 4,4 4,5 … 4,8 4,9 …
3,1 3,2 3,3 3,4 3,5 … 3,8 3,9 …
2,1 2,2 2,3 2,4 2,5 … 2,8 2,9 …
1,1 1,2 1,3 1,4 1,5 … 1,8 1,9 …

1,1 1,2 1,3 1,4 2,1 2,2 2,3 … 4,4 1,5 … 4.8 …

• Unaligned 4×4 vector (1,2 … 4,5) is shaded
• To read, two aligned vectors (1,1 … 4,4 and 1,5 … 4,8) are loaded, then 12

elements from the first and 4 from the second are assembled into a SIMD
register using a permute instruction

Feb. 27, 2017

Example Stencil-Compiler Feature:
Automatic Vector Folding

Example Optimizations Applied to Iso3DFD

23

0.
7

1.
5 55

.3 27
8.

7

55
4.

9

57
2.

2

63
9.

7

66
9.

7 89
0.

5

94
8.

8

1,
00

8.
3

1,
07

5.
4

0

200

400

600

800

1,000

1,200

Th
ro

ug
hp

ut
 (G

FL
O

PS
)

Feature added or setting changed

17.6 G
points/sec

Feb. 27, 2017

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Intel measurements as of Oct., 2016 on
Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4. See complete configuration details on "Configuration" slide.

http://www.intel.com/benchmarks

Automatic Tuner

Challenge
� Dozens of possible optimization strategies
� Some of these can take hundreds of values (e.g., cache-block dimensions)
� Leads to combinatorial explosion in size of possible design space

Solution
� Use genetic algorithm to select optimizations and tune parameters
� Tuner repeats the following sequence until convergence

– Chooses optimization strategies and parameters based on random values (first
generation) or mutation and crossover (subsequent generations)

– Runs stencil compiler, loop compiler, C++ compiler, and kernel itself
– Inputs resulting performance as fitness

24Feb. 27, 2017

25

High-Level Flow with Tuner

Feb. 27, 2017

Optimized stencil
calculation and prefetch

code
Stencil-

specification code
Stencil compiler

Loop compiler

Nested loops with
OpenMP, prefetch code,

etc.

Other C++ code

Intel C++
compiler

Executable
stencil kernel

binary
Performance

results

Loop-specification
code

Automated
Tuner

18.4 G
points/sec

Example Optimizations Applied with Automatic
Tuner to Iso3dfd

26

1,125.1

0

200

400

600

800

1,000

1,200

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Th
ro

ug
hp

ut
 (

G
FL

O
PS

)

Individuals evaluated

Feb. 27, 2017

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Intel measurements as of Oct., 2016 on
Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4. See complete configuration details on "Configuration" slide.

http://www.intel.com/benchmarks

Example 2: AWP-ODC-OS
AWP-ODC: Anelastic Wave Propagation-
Olsen, Day, Cui
� Software that simulates seismic wave

propagation after a fault rupture
� Widely used by the Southern California

Earthquake Center (SCEC) community
� In recent years has primarily run on GPU

accelerated supercomputers
� First ever open source release this year

(BSD-2 license), including port to Intel Xeon
Phi processor, under development by San
Diego Supercomputer Center (SDSC) at Univ.
of CA, San Diego (UCSD)

27Feb. 27, 2017

• CyberShake Study 15.4 hazard map for
336 sites around Southern California

• Warm colors represent areas of high
hazard

Content on this slide courtesy of UCSD

AWP-ODC Numerics
Finite Difference code
� Staggered-grid scheme
� Fourth-order accurate in space and second-order accurate in time

Fifteen grids updated in every time-step
� 3 velocity grids
� 6 stress grids
� 6 grids for auxiliary memory-variables required for accurate high-

frequency simulation

Fifteen stencils
� Nine 13-point stencils
� Six 9-point stencils

Free-surface boundary computation every time-step

28Feb. 27, 2017

AWP-ODC stencils, starting from top left:
velocity/stress update, memory variable stencil,
boundary stencil

Content on this slide courtesy of UCSD

Preliminary AWC-ODC-OS performance

29

Numerics: Velocity + Frequency-dependent
viscoelasticity and free-surface boundary
conditions
Domain sizes chosen to use most of the
available memory for each platform (MCDRAM
for Intel Xeon Phi processors)
Performance measured in number of Lattice
Update Points per Second, updating 15 grids
Compared time-to-solution per grid-point for:
• Single-socket Intel® Xeon® processor

E5-2680 v3
• Intel Xeon Phi processor 7210 and 7250
• NVIDIA K20X, M40 and Titan X*

131

552

704

1,110 1,140 1,170

E5-2680 K20X M40 7210 Titan X 7250

M
LU

PS

Feb. 27, 2017

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Measurements created by UC San Diego San
Diego Supercomputer Center (SDSC) as of Oct., 2016. See complete configuration details on "Configuration" slide. *Other names and brands may be claimed as the property of others

Preliminary

Content on this slide courtesy of UCSD

http://www.intel.com/benchmarks
https://anl.app.box.com/v/IXPUG2016-presentation-13

Worldwide Training

Intel® Parallel Computing Centers

Commercial ISVs Embracing
Intel® Xeon Phi™ processor Family

Intel® Modern Code

FREE…Worldwide Training
and Teaching Resources

Parallel Programming
Reference Books

Click on the images to learn moreFeb. 27, 2017

Colfax training
with access to a
36-node cluster

Feb. 27, 2017 31

https://software.intel.com/en-us/ipcc/teaching
https://software.intel.com/en-us/ipcc/teaching
software.intel.com/modern-code
software.intel.com/modern-code
https://software.intel.com/en-us/ipcc/training
https://software.intel.com/en-us/ipcc/training
https://software.intel.com/en-us/articles/parallel-programming-books
https://software.intel.com/en-us/articles/parallel-programming-books
https://software.intel.com/en-us/xeonphionlinecatalog
https://software.intel.com/en-us/xeonphionlinecatalog
https://software.intel.com/en-us/ipcc/teaching
https://software.intel.com/en-us/ipcc/teaching
https://colfaxresearch.com/
https://colfaxresearch.com/

IXPUG Community Forum

The Intel® Xeon Phi™ User's Group (IXPUG) is an independent global users group whose mission is to

provide a forum for the free exchange of information that enhances the usability and efficiency of scientific

and technical applications running on large High Performance Computing (HPC) systems using the Intel®

Xeon Phi™ processor. IXPUG is administered by representatives of member sites that operate large Phi-

based HPC systems.

• IXPUG Monthly Tuning Meetings: conference calls to inform the Intel® Xeon Phi™ processor community of

relevant updates and share techniques, results, and methodologies.

Feb. 27, 2017 32

YASK Resources
Software available
� YASK: https://github.com/01org/yask (MIT OS license) with several example stencils:

– Simple symmetric 3D shapes on one grid
– Simple heat-transfer a la miniGhost
– Iso3DFD & AWP examples shown earlier (plus elastic version of AWP)
– Standard-staggered grid (SSG)
– Full-staggered grid (FSG), with and without absorbing boundary conditions

� AWP-ODC-OS: https://github.com/HPGeoC/awp-odc-os (BSD OS license)
Related collateral
� YASK article: https://software.intel.com/en-us/articles/recipe-building-and-running-yask-yet-

another-stencil-kernel-on-intel-processors
� High Performance GeoComputing Lab: http://hpgeoc.sdsc.edu
� Source of AWP-ODC-OS information and data provided by UCSD:

https://anl.app.box.com/v/IXPUG2016-presentation-13
� WOLFHPC’16 paper “YASK–Yet Another Stencil Kernel: a framework for HPC stencil code-

generation and tuning”

33Feb. 27, 2017

https://github.com/01org/yask
https://github.com/HPGeoC/awp-odc-os
https://software.intel.com/en-us/articles/recipe-building-and-running-yask-yet-another-stencil-kernel-on-intel-processors
http://hpgeoc.sdsc.edu/
https://anl.app.box.com/v/IXPUG2016-presentation-13

Summary

Intel® Xeon Phi™ Processor (Knights Landing)
� Up to 72 cores of 4 hyper-threads each
� New AVX-512 instruction set architecture
� High-bandwidth on-package MCDRAM

Tuning Stencil Code for the Xeon Phi
� Thread scaling, vector scaling, cache blocking, fabric scaling, data layout
� YASK framework for rapid prototyping and tuning

Resources
� Training
� Experimental cluster
� Community forum

34Feb. 27, 2017

Legal Disclaimers

36Feb. 27, 2017

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or
retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources
of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel
representative to obtain the latest forecast, schedule, specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and
uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the annual report on Form 10-K.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are
accurate.

Intel, Xeon, Xeon Phi, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

http://www.intel.com/performance

38

Experimental Configurations
Configuration details: YASK HPC Stencils, iso3DFD Kernel
Intel® Xeon Phi™ processor 7250: Intel® Xeon Phi™ processor 7250, 68 cores, 272 threads, 1400 MHz core freq. (Turbo
On), MCDRAM 16 GiB, DDR4 96GiB 2400 MHz, quad cluster mode, MCDRAM flat memory mode, Red Hat* Enterprise
Linux Server release 6.7

Configuration details: YASK HPC Stencils, AWP-ODC Kernel
Intel® Xeon® processor E5-2680 v3: Single Socket Intel® Xeon® processor E5-2680 v3, 2.5 GHz (Turbo Off) , 12 Cores,
12 Threads (HT off), DDR4 128GiB, CentOS* 6.7
Intel® Xeon Phi™ processor 7210: Intel® Xeon Phi™ processor 7210, 64 cores, 256 threads, 1300 MHz core freq. (Turbo
On), MCDRAM 16 GiB, DDR4 96GiB 2133 MHz, quad cluster mode, MCDRAM flat memory mode, CentOS* 7.2

Intel® Xeon Phi™ processor 7250: Intel® Xeon Phi™ processor 7250, 68 cores, 272 threads, 1400 MHz core freq. (Turbo
On), MCDRAM 16 GiB, DDR4 96GiB 2400 MHz, quad cluster mode, MCDRAM flat memory mode, CentOS* 7.2
NVIDIA Tesla* K20X (Kepler): Part number 900-22081-0030-000, 1x GK110 CPU, 2688 cores, 732 MHz core freq, 6GiB
2.6GHz GDDR5
NVIDIA M40 (Maxwell): Part number TCSM40M-PB, 3072 cores, 948 MHz base freq, 12 GiB GDDR5

NVIDIA Titan X (Pascal): 3072 cores, 1000 MHz base freq, 12 GiB GDDR5

*Other names and brands may be claimed as the property of othersFeb. 27, 2017

Top500 Details (first 5)

39Feb. 27, 2017

Rank Site System Cores
Rmax
(TFlop/s)

Rpeak
(TFlop/s)

Power
(kW)

5 DOE/SC/LBNL/NERS
C
United States

Cori - Cray XC40, Intel Xeon Phi 7250 68C
1.4GHz, Aries interconnect
Cray Inc.

622,336 14,014.7 27,880.7 3,939

6 Joint Center for
Advanced High
Performance
Computing
Japan

Oakforest-PACS - PRIMERGY CX1640
M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel
Omni-Path
Fujitsu

556,104 13,554.6 24,913.5 2,718.7

12 CINECA
Italy

Marconi Intel Xeon Phi - CINECA Cluster,
Intel Xeon Phi 7250 68C 1.4GHz, Intel
Omni-Path
Lenovo

241,808 6,223.0 10,833.0

18 DOE/SC/Argonne
National Laboratory
United States

Theta - Cray XC40, Intel Xeon Phi 7230
64C 1.3GHz, Aries interconnect
Cray Inc.

207,360 5,095.8 8,626.2 1,087

33 Academic Center for
Computing and
Media Studies
(ACCMS), Kyoto
University
Japan

Camphor 2 - Cray XC40, Intel Xeon Phi
7250 68C 1.4GHz, Aries interconnect
Cray Inc.

122,400 3,057.3 5,483.5 748.1

Source: https://www.top500.org/statistics/sublist/

https://www.top500.org/site/48429
https://www.top500.org/system/178924
https://www.top500.org/site/50673
https://www.top500.org/system/178932
https://www.top500.org/site/47495
https://www.top500.org/system/178937
https://www.top500.org/site/47347
https://www.top500.org/system/178926
https://www.top500.org/site/50516
https://www.top500.org/system/178927
https://www.top500.org/statistics/sublist/

Top500 Details (next 5)

40Feb. 27, 2017

Rank Site System Cores
Rmax
(TFlop/s)

Rpeak
(TFlop/s)

Power
(kW)

106 MIT/Lincoln
Laboratory
United States

TX-Green - S7200AP Cluster, Intel Xeon
Phi 7210 64C 1.3GHz, Intel Omni-Path
Dell

41,472 1,032.8 1,725.2

144 Texas Advanced
Computing
Center/Univ. of
Texas
United States

Stampede-KNL - Intel S7200AP Cluster,
Intel Xeon Phi 7250 68C 1.4GHz, Intel
Omni-Path
Dell / Intel

34,272 842.9 1,535.4 515.5

375 SFB/TR55 at Fujitsu
Technology
Solutions GmbH
Germany

QPACE3 - PRIMERGY CX1640 M1, Intel
Xeon Phi 7210 64C 1.3GHz, Intel Omni-
Path
Fujitsu

18,432 447.1 766.8 77

397 Thomas Jefferson
National Accelerator
Facility
United States

SciPhi XVI - KOI Cluster, Intel Xeon Phi
7230 64C 1.3GHz, Intel Omni-Path
Koi Computers

16,896 425.9 702.9 111

456 Atos
France

Sequana_BXI - Bull Sequana, Intel Xeon
Phi 7250 68C 1.4GHz, Bull BXI 1.1
Bull, Atos Group

14,960 380.5 670.2 103

Source: https://www.top500.org/statistics/sublist/

https://www.top500.org/site/48296
https://www.top500.org/system/178939
https://www.top500.org/site/48958
https://www.top500.org/system/178914
https://www.top500.org/site/50677
https://www.top500.org/system/178938
https://www.top500.org/site/50676
https://www.top500.org/system/178936
https://www.top500.org/site/50630
https://www.top500.org/system/179038
https://www.top500.org/statistics/sublist/

Example Stencil-Compiler Feature:
Automatic Vector Folding

Background: Traditional 1D vectorization

41

5,1 5,2 5,3 5,4 5,5 … 5,16 5,17 …
4,1 4,2 4,3 4,4 4,5 … 4,16 4,17 …
3,1 3,2 3,3 3,4 3,5 … 3,16 3,17 …
2,1 2,2 2,3 2,4 2,5 … 2,16 2,17 …
1,1 1,2 1,3 1,4 1,5 … 1,16 1,17 …

Logical indices in 2D

1,1 1,2 1,3 … 1,16 1,17 … 2,1 2,2 2,3 … 2,16 …

Layout in memory (1D)

• Traditional 1D vectorization layout (16×1)
• First aligned vector (1,1 … 1,16) is shaded
• Read with simple and efficient aligned vector load

y

x

Feb. 27, 2017

Automatic Vector Folding

Background: Traditional 1D vectorization

42

5,1 5,2 5,3 5,4 5,5 … 5,16 5,17 …
4,1 4,2 4,3 4,4 4,5 … 4,16 4,17 …
3,1 3,2 3,3 3,4 3,5 … 3,16 3,17 …
2,1 2,2 2,3 2,4 2,5 … 2,16 2,17 …
1,1 1,2 1,3 1,4 1,5 … 1,16 1,17 …

Logical indices in 2D

1,1 1,2 1,3 … 1,16 1,17 … 2,1 2,2 2,3 … 2,16 …

Layout in memory (1D)

• Unaligned vector (1,2 … 1,17) is shaded
• Can use simple unaligned load or two aligned loads

plus a simple shift instruction to create vector

y

x

Feb. 27, 2017

Example: 2D “4x4” vector folding

43

y

x

5,1 5,2 5,3 5,4 5,5 … 5,8 5,9 …
4,1 4,2 4,3 4,4 4,5 … 4,8 4,9 …
3,1 3,2 3,3 3,4 3,5 … 3,8 3,9 …
2,1 2,2 2,3 2,4 2,5 … 2,8 2,9 …
1,1 1,2 1,3 1,4 1,5 … 1,8 1,9 …

1,1 1,2 1,3 1,4 2,1 2,2 2,3 … 4,4 1,5 … 4,8 …

• 2D vector-folding layout (4×4)
• First aligned vector (1,1 … 4,4) is shaded
• Read with simple and efficient aligned vector load

Logical indices in 2D

Layout in memory (1D)

Feb. 27, 2017

Automatic Vector Folding

Example Stencil-Compiler Feature:
Automatic Prefetch Generation

44

Full prefetch function loads
all 7 cache lines

This example
stencil reads from
7 cache lines (after
vectorization):

The stencil compiler
generates the
following prefetch
functions:

X-direction prefetch
function loads only these 3
leading cache lines

Y-direction prefetch
function loads only these 5
leading cache lines

y

x

Feb. 27, 2017

