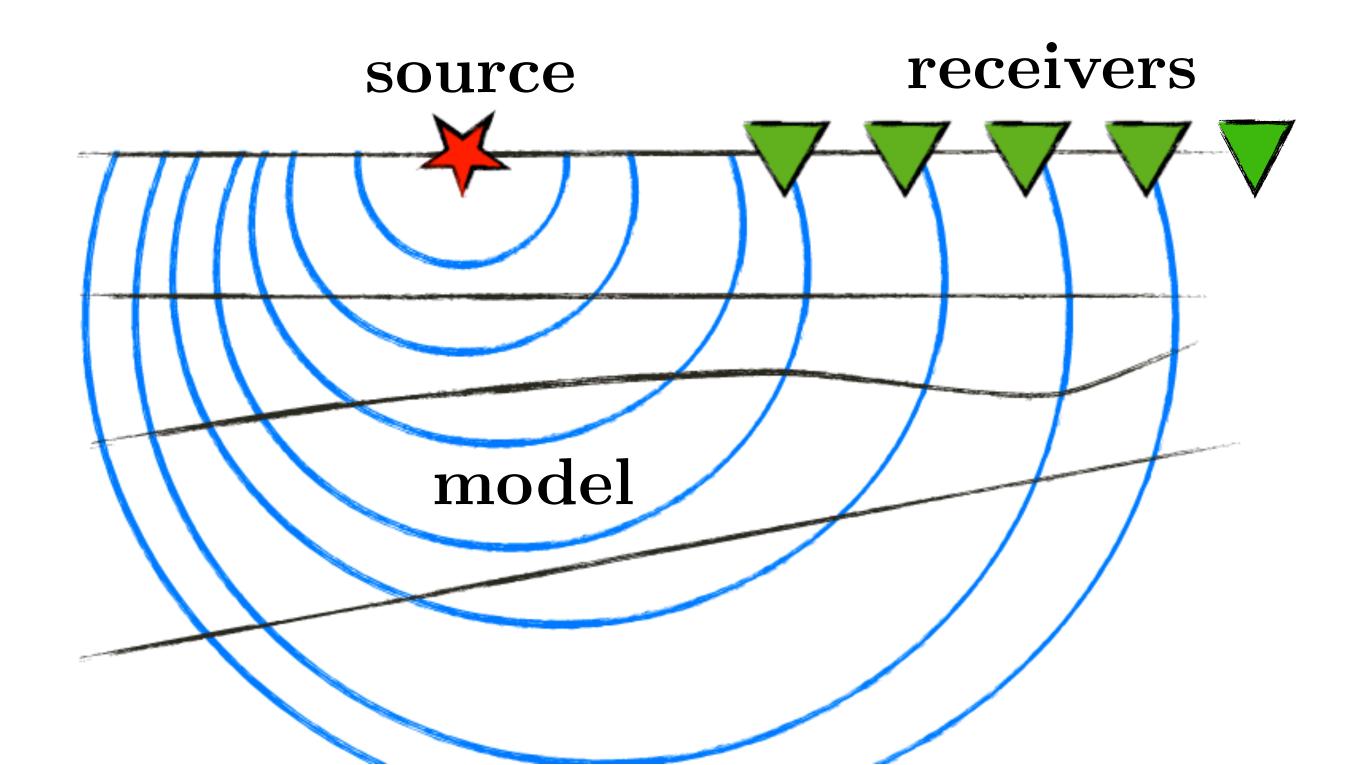
Large-scale workflows for wave-equation based inversion in Julia

Philipp A. Witte, Mathias Louboutin and Felix J. Herrmann

University of British Columbia

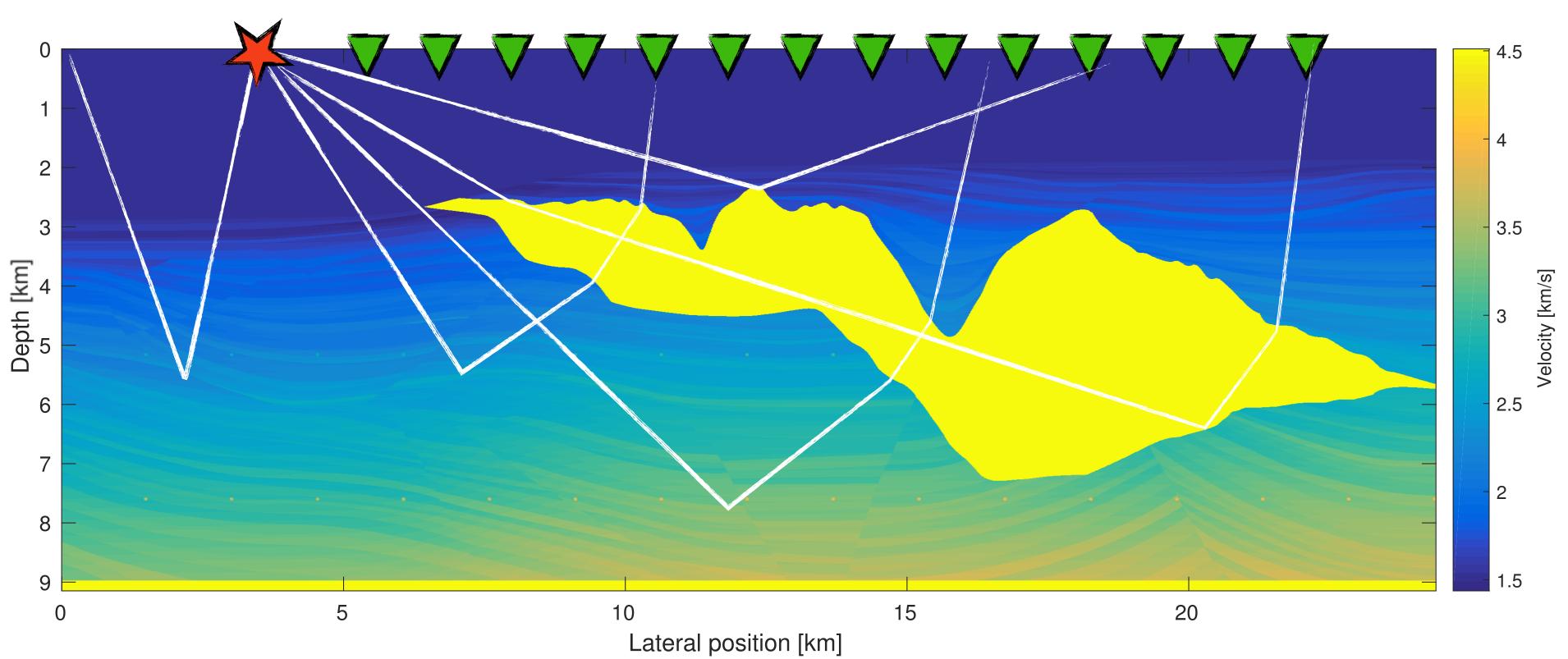
Use Geophysics to understand the earth

▶ obtain information about the earth from surface seismic experiments



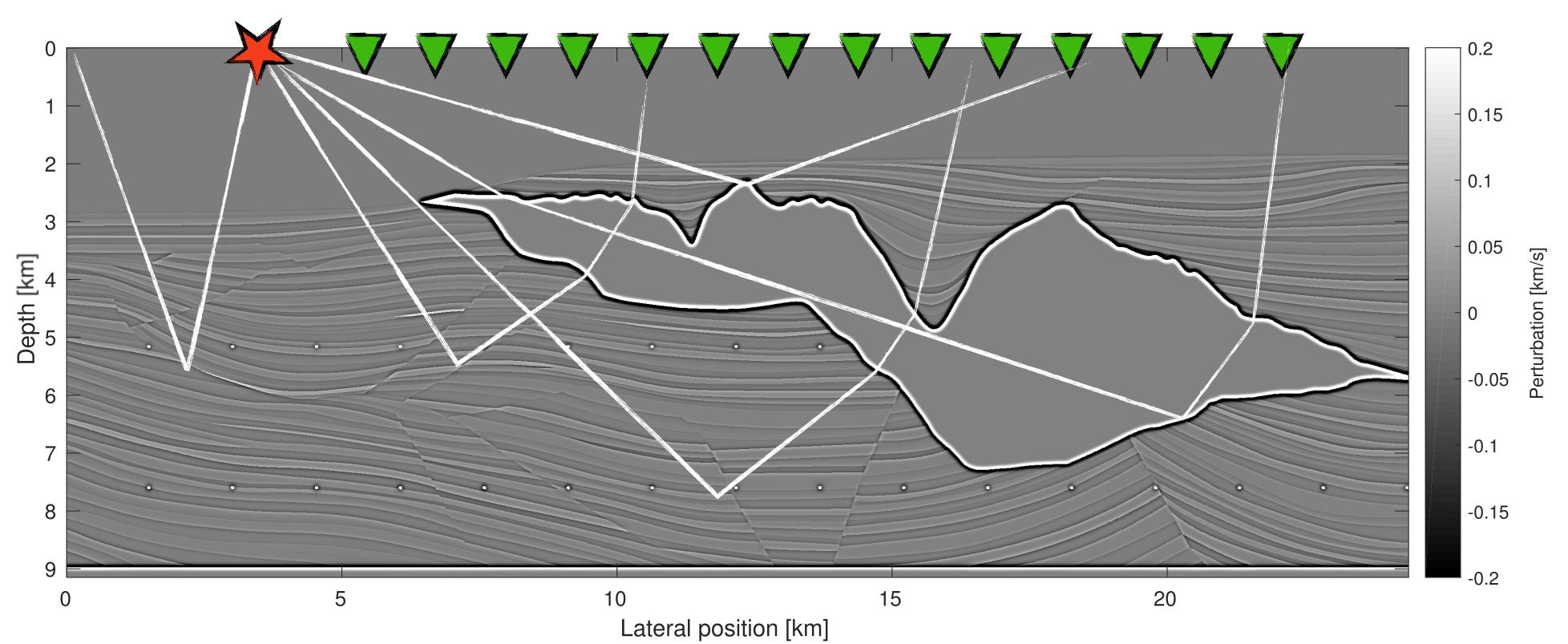
Use Geophysics to understand the earth

invert for subsurface parameters, e.g. velocity, density, porosity



Use Geophysics to understand the earth

image geological interfaces (perturbations of earth parameters)



Formulate inverse problems and use numerical optimization

invert for velocity — nonlinear least squares optimization problem

$$\underset{\mathbf{m}}{\text{minimize}} \quad \frac{1}{2}||\mathbf{A}(\mathbf{m})^{-1}\cdot\mathbf{q}-\mathbf{d}||_2^2 \qquad \qquad \text{(Virieux and Operto, 2009)}$$

▶ image the subsurface → linear least squares optimization problem

$$\underset{\delta \mathbf{m}}{\text{minimize}} \quad \frac{1}{2} || \mathbf{J} \cdot \delta \mathbf{m} - \delta \mathbf{d} ||_2^2 \qquad \qquad \text{(Dong et al., 2012)}$$

Need:

- access to objective function values and gradients
- \blacktriangleright matrices A(m), J, or actions of these matrices on vectors

Challenges:

- problem sizes are huge:
 - seismic surveys consist of tens of thousands of individual experiments
 - model wave propagation over thousands of time steps in large domains
 - typical size of modeling matrix: $\mathbf{A}(\mathbf{m}) \in \mathbb{R}^{n \times n}, n = 1e16$
- model physical system data is irregular, has coordinates and meta data
- inverse problems are difficult to solve (ill-posed, non-convex, non-unique)
- software to solve seismic inverse problems:
 - needs to be fast and handle large amounts of data
 - often tailored towards a specific application
 - difficult to maintain and modify, often slow adaptation of new concepts
 - iterative imaging algorithms rely on using all the data in each iteration

Our goal:

- ▶ flexible framework for solving seismic inverse problems
- abstract matrices and vectors to easily formulate algorithms
- data containers for irregular seismic data
- ▶ robust parallel framework that scales on HPC environments/the cloud
- ▶ interface Devito (finite difference DSL) to solve PDEs
- ▶ framework that can handle actual 3D industry-sized problems
 - lower computational costs using stochastic optimization

Solve (acoustic) wave equation for a given model

continuous form

$$m\frac{\partial^2}{\partial t^2}u - \nabla^2 u = s$$

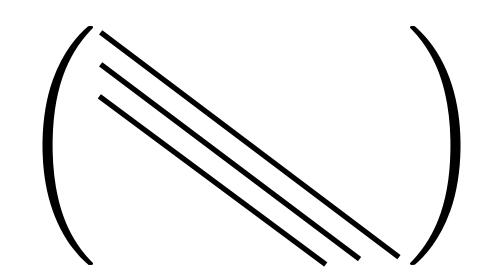
m: model parameters (slowness squared)

u: wave fields

s: source wave fields

discretize and rewrite as linear system

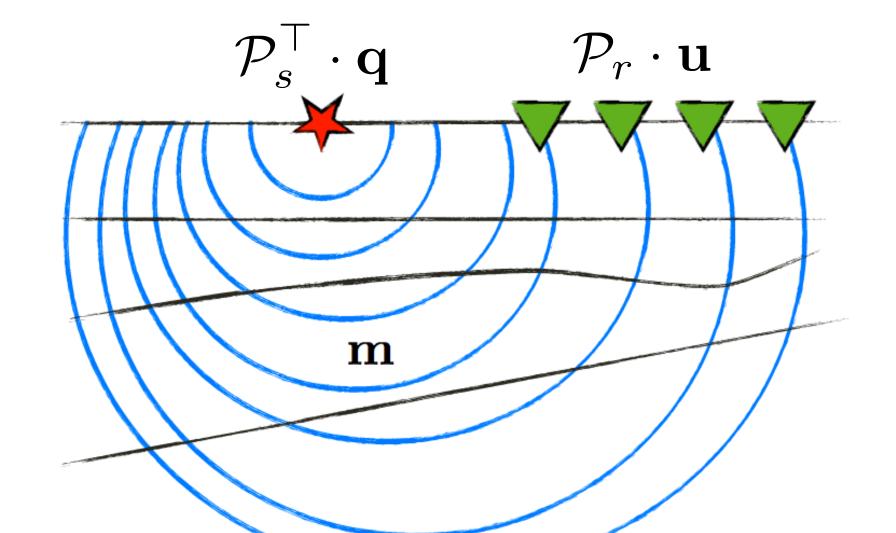
$$\mathbf{A} \cdot \mathbf{u} = \mathbf{s}$$



A is lower triangular, solve with forward elimination

Model surface recorded seismic data

$$\mathbf{d} = \mathcal{P}_r \cdot \mathbf{F} \cdot \mathcal{P}_s^{ op} \cdot \mathbf{q}$$

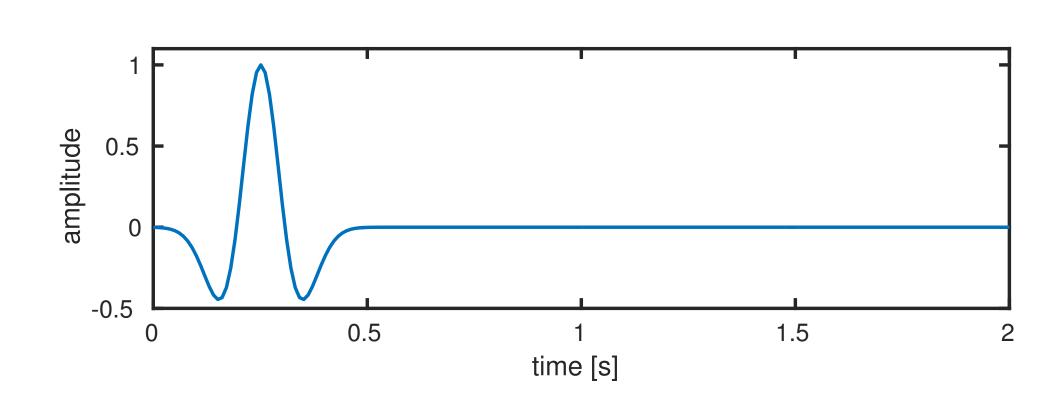


$$\mathbf{F} := \mathbf{A}(\mathbf{m})^{-1}$$

 \mathcal{P}_r : receiver restriction

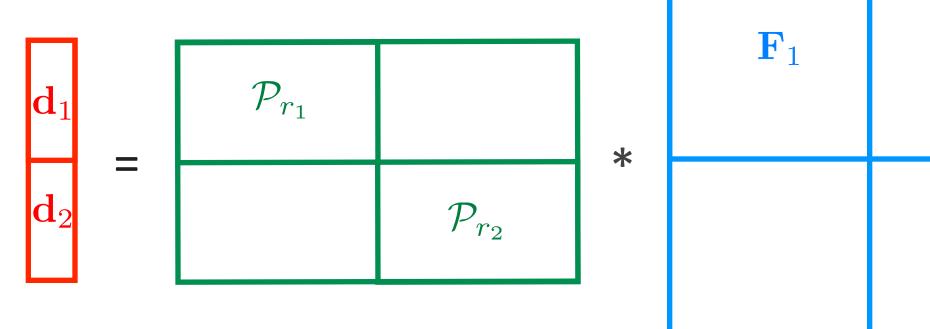
 \mathcal{P}_s^{\top} : source injection

q : source wavelet



Model surface recorded seismic data (2 experiments)

$$\mathbf{d} = \mathcal{P}_r \cdot \mathbf{F} \cdot \mathcal{P}_s^{ op} \cdot \mathbf{q}$$



	*	$\mathcal{P}_{s_1}^ op$		*	${f q}_1$
${f F}_2$			$\mathcal{P}_{s_2}^{\top}$	~	${f q}_2$

- \blacktriangleright can barely store $\mathbf{d} \ (1e11 \times 1)$
- \blacktriangleright cannot store $\mathcal{P}_s^{\top} \cdot \mathbf{q} \ (1e16 \times 1)$
- \blacktriangleright cannot form $\mathbf{F}, \mathcal{P}_r, \mathcal{P}_s$ explicitly $(1e16 \times 1e16)$

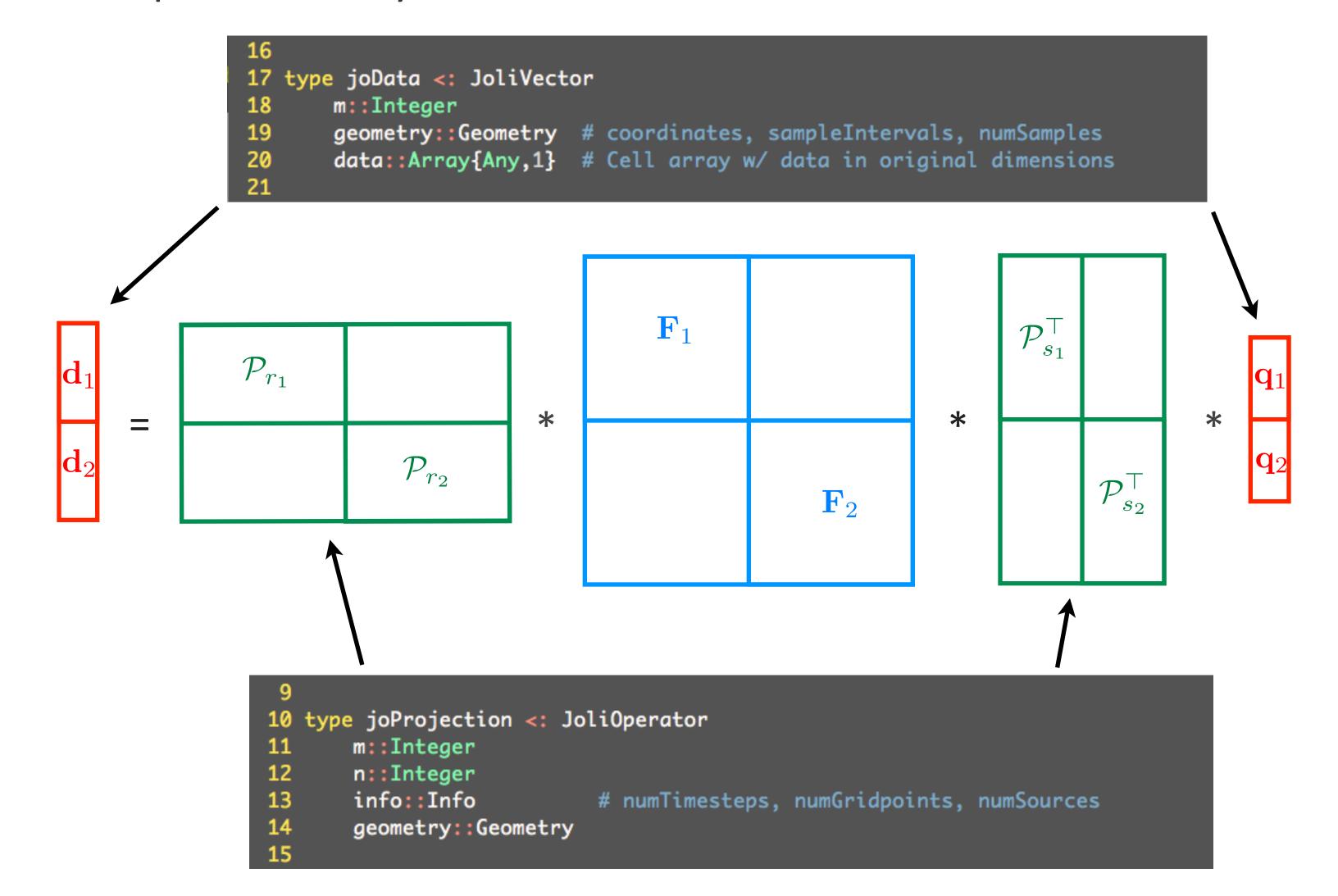
Adapt idea of matrix-free linear operators

- ▶ SPOT a linear operator toolbox in Matlab (van den Berg and Friedlander, 2012)
- operators look and behave like explicit matrices
- matrix "knows" how to apply itself to vectors
- ▶ forward, adjoint matrix-matrix, matrix-vector products etc.

```
>> n = 1e3;
>> % Set up operator
>> F = opDFT(n)
F =
    Spot operator: DFT(1000,1000)
    rows: 1000 complex: yes
    cols: 1000 type: DFT
>> % FFT
>> y = F*x;
>> % iFFT
>> z = F'*y;
```

Implement abstract linear operators and vectors in Julia

► JOLI - Julia Operator Library



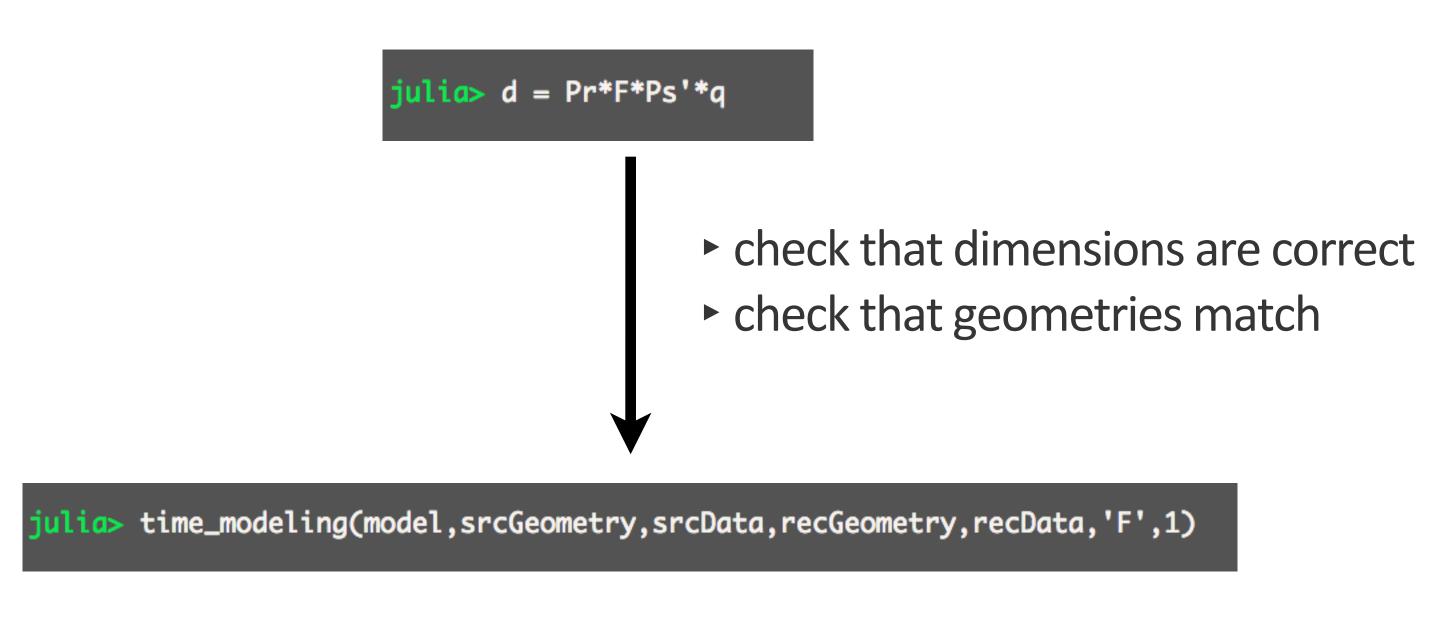
Solve forward wave equation:

Solve adjoint wave equation:

JIT compilation

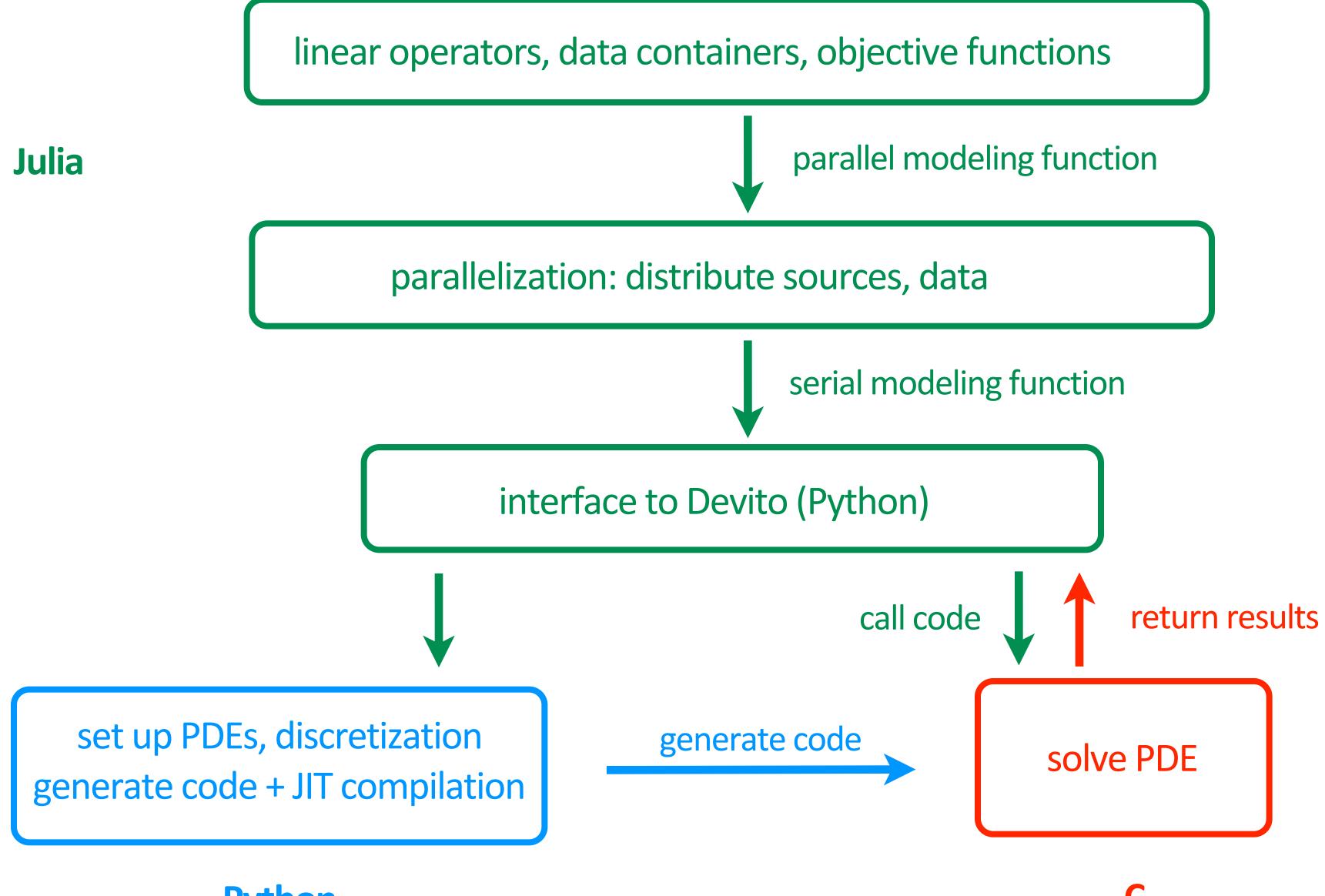
Software design

What happens after executing the modeling command?



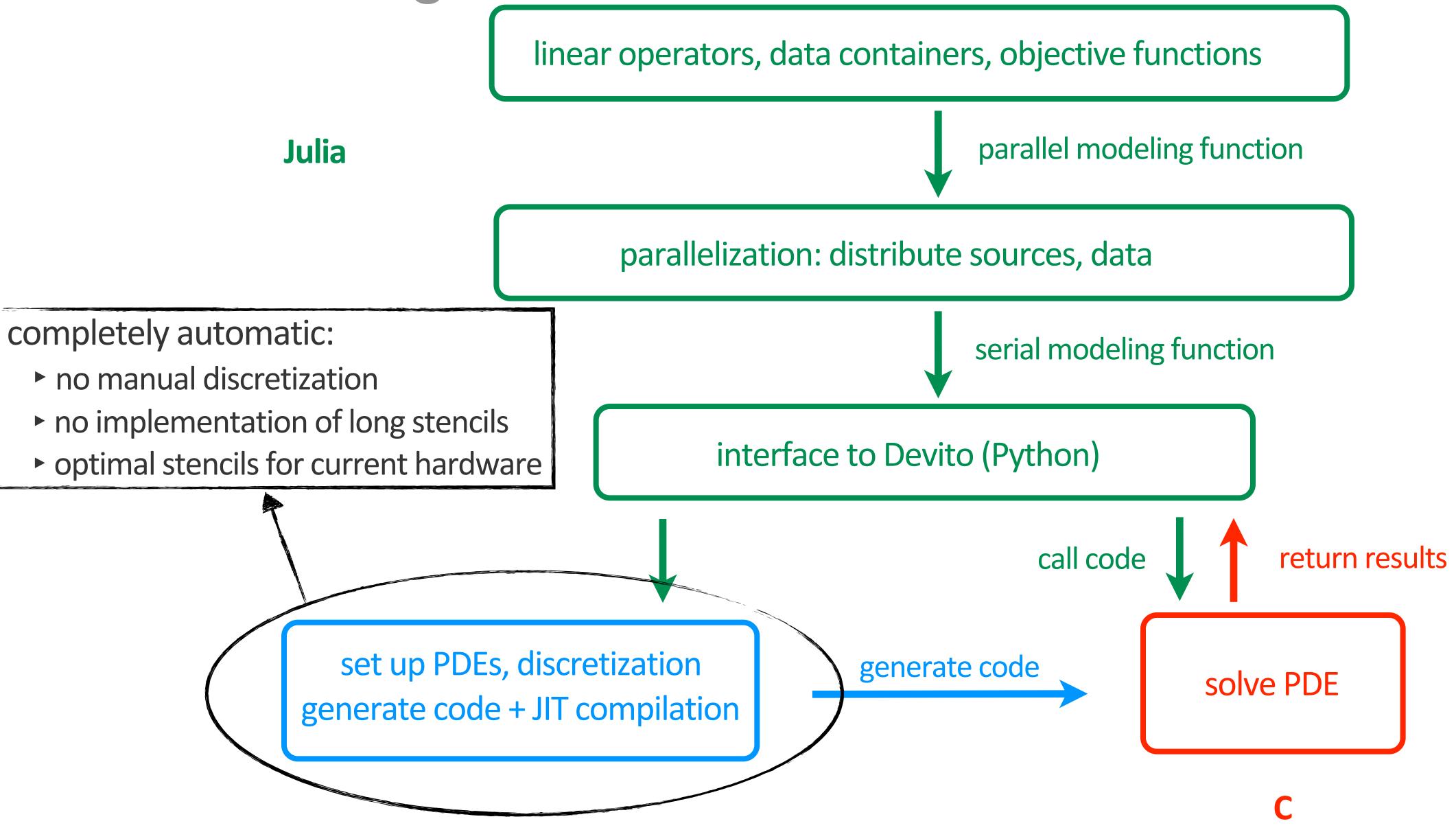
- call serial/parallel modeling function
- set function arguments with parameters from linear operators

Software design



Python

Software design



The inverse problem

Inverse problem

- invert model for given data
- ▶ how does a perturbation in the model relate to a perturbation in the wave field?

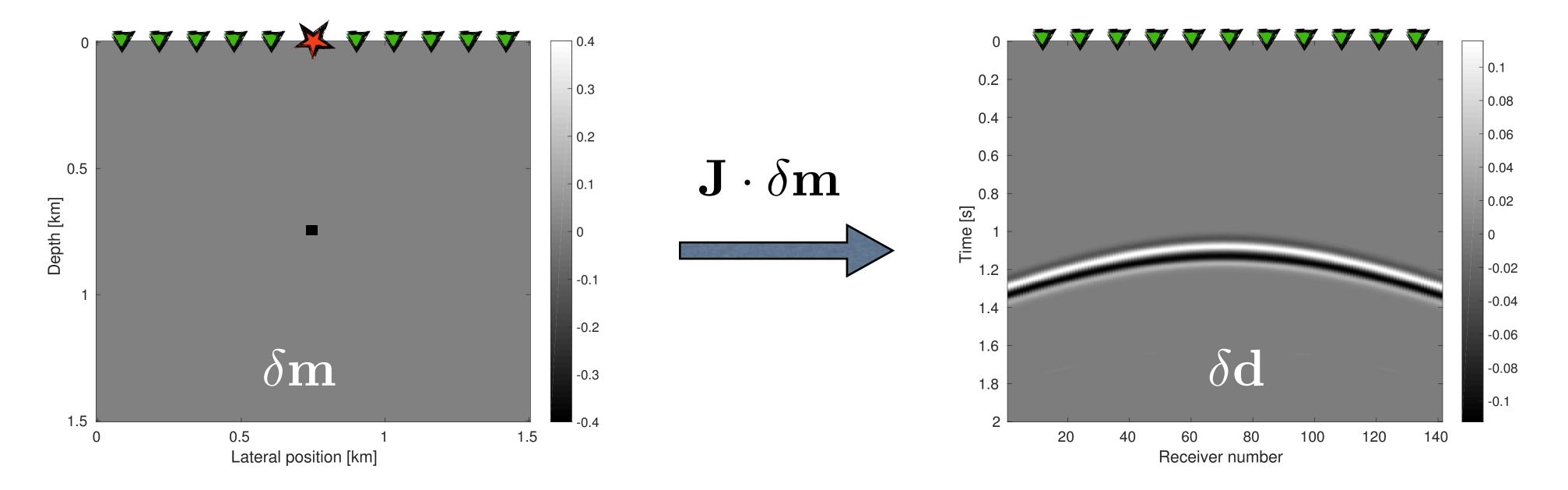
$$\mathbf{u} = \mathbf{A}(\mathbf{m})^{-1} \cdot \mathbf{q}$$

$$\frac{\partial \mathbf{u}}{\partial \mathbf{m}} = \frac{\partial}{\partial \mathbf{m}} \left(\mathbf{A}(\mathbf{m})^{-1} \cdot \mathbf{q} \right) := \mathbf{J} \qquad \text{(Virieux and Operto, 2009)}$$

including source/receiver projections:

$$\mathbf{J} = -\mathcal{P}_r \cdot \mathbf{A}(\mathbf{m})^{-1} \cdot \frac{\partial \mathbf{A}(\mathbf{m})}{\partial \mathbf{m}} \cdot \mathbf{A}(\mathbf{m})^{-1} \cdot \mathcal{P}_s^{\top} \cdot \mathbf{q}$$

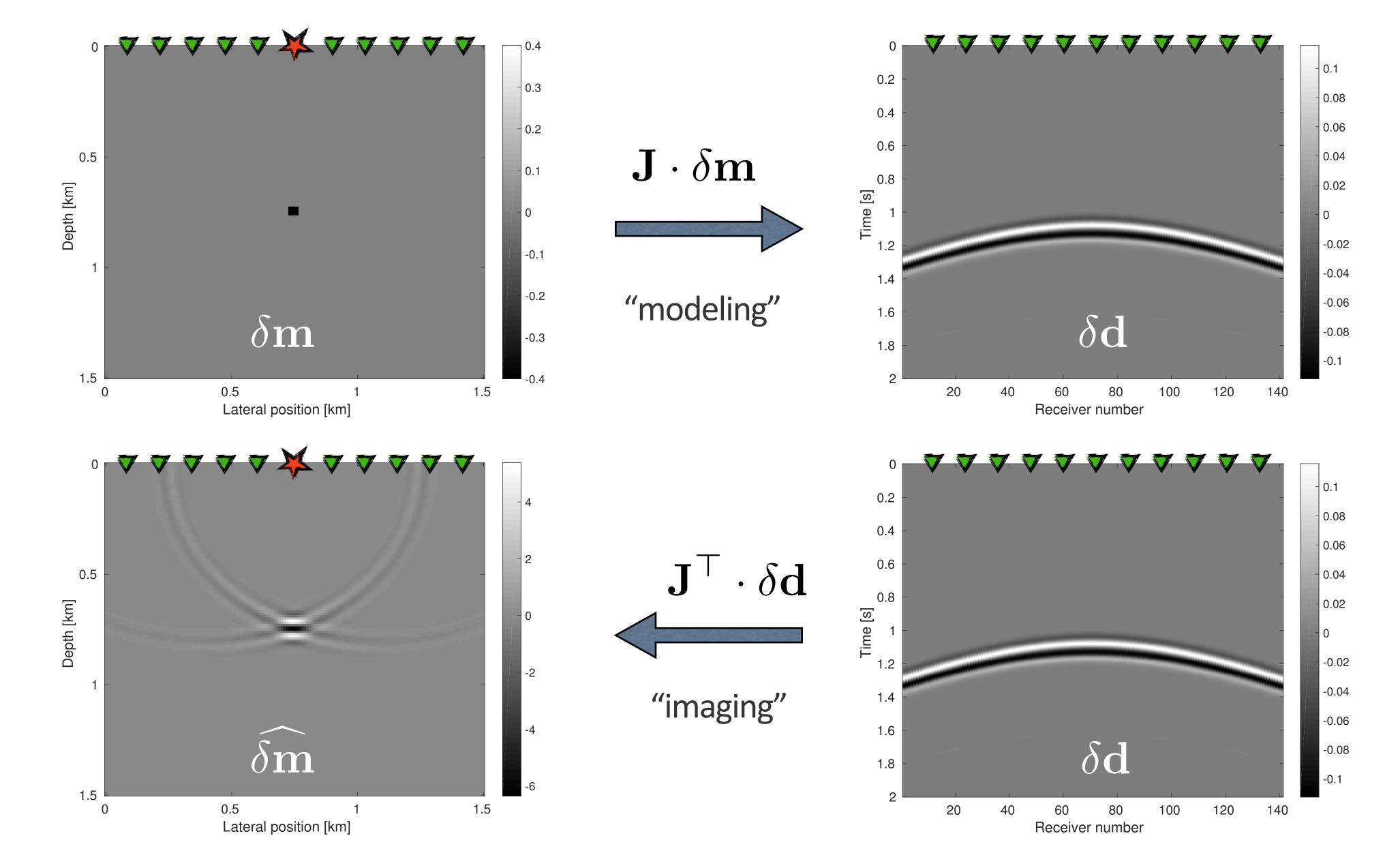
The inverse problem



Perturbation w.r.t background model

Surface recorded seismic data

The inverse problem



Linear inverse problems: seismic imaging

Seismic imaging as a linear least squares problem

(Dong et al., 2012)

minimize $\frac{1}{2} || \mathbf{J} \cdot \delta \mathbf{m} - \delta \mathbf{d} ||_2^2$ $(\mathbf{J} \in \mathbb{R}^{m \times n}, m > 1e11, n > 1e9)$ objective function:

$$(\mathbf{J} \in \mathbb{R}^{m \times n}, m > 1e11, n > 1e9)$$

easy to implement a solver using JOLI operators:

```
2 # initialize solution
 3 dm = zeros(n)
 5 for j=1:k
     # residual and gradient
      r = J*dm - d
      g = J'*r'
       # step size
       t = norm(r)^2/norm(g)^2
11
12
13
      # update x
14
       dm -= t*g
15 end
```

Seismic imaging as a linear least squares problem

- lacktriangle f J is ill-conditioned and very large, can only afford 10s of iterations, need to save $\ddot{f u}[t]$ (~TB)
- reduce computational cost using techniques from stochastic optimization
- ▶ linearized Bregman method (Yin, 2010)

minimize
$$\lambda ||\mathbf{x}||_1 + \frac{1}{2}||\mathbf{x}||_2^2$$
 subject to: $||\mathbf{A} \cdot \mathbf{x} - \mathbf{b}||_2 \le \sigma$

 λ : thresholding parameter

 σ : noise level

- designed for compressive sensing problems with $\mathbf{A} \in \mathbb{R}^{m \times n}, m << n$
- lacktriangleright related to sparse (block-) Kaczmarz solver for problems w/ any $\mathbf{A} \in \mathbb{R}^{m imes n}$ (Lorenz et al. , 2014)

Linearized Bregman method for least squares imaging:

minimize
$$\lambda ||\mathbf{C} \cdot \delta \mathbf{m}||_1 + \frac{1}{2} ||\mathbf{C} \cdot \delta \mathbf{m}||_2^2$$
 subject to: $||\mathbf{J} \cdot \delta \mathbf{m} - \delta \mathbf{d}||_2 \le \sigma$

C: Curvelet transform

 λ : thresholding parameter

 σ : noise level

 \blacktriangleright in each iteration possible to work w/ subset of rows of ${f J}, \delta {f d}$



only subsets of experiments in each iteration

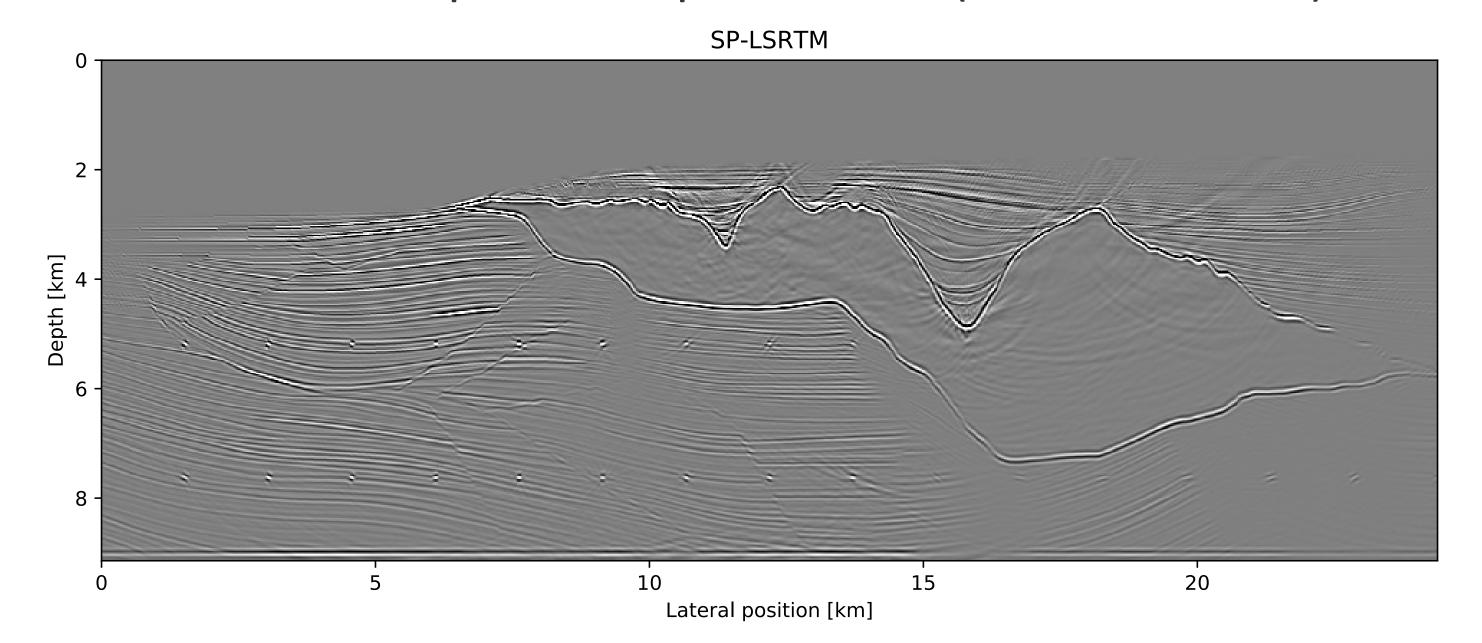
Linearized Bregman method for least squares imaging:

▶ Algorithm (Lorenz et al., 2014)

- 1. for $k = 0, 1, \cdots$ 2. $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{J}_{r(k)}^{\top} (\mathbf{J}_{r(k)} \mathbf{x}_k - \delta \mathbf{d}_{r(k)}) \cdot \max(0, 1 - \frac{\sigma}{||\hat{\mathbf{J}}_{r(k)} \mathbf{x}_k - \mathbf{b}_{r(k)}||_2})$
- 3. $\mathbf{x}_{k+1} = \mathbf{C}^* S_{\lambda}(\mathbf{C} \mathbf{z}_{k+1})$
- 4. end for
- ightharpoonup r(k) is sequence of subsampled experiments (cyclic or random)
- ▶ instead of "touching" full data set in each iteration, only touch every data sample one or twice
- ▶ calculate gradients on a few large nodes (TB RAM) rather than many small ones

Example with model from the introduction:

- ▶ large 2D model (4e6 grid points)
- ▶ 1000 surface seismic experiments (2.5e9 data points)
- ▶ 20 iterations w/ 100 experiments per iteration (4000 PDE solves)



Nonlinear inverse problems

Objective functions for nonlinear inverse problems

- functions that spin off function values and gradients
- can be passed to black-box optimization libraries (e.g. NLopt, JuMP)

Example: invert for velocity model (full waveform inversion)

nonlinear least squares problem

minimize
$$\frac{1}{2} || \mathcal{P}_r \cdot \mathbf{A}(\mathbf{m})^{-1} \cdot \mathcal{P}_s^{\top} \cdot \mathbf{q} - \mathbf{d} ||_2^2$$

gradient given by

$$\mathbf{g} = \mathbf{J}^{\top} \cdot \left(\mathcal{P}_r \cdot \mathbf{A}(\mathbf{m})^{-1} \cdot \mathcal{P}_s^{\top} \cdot \mathbf{q} - \mathbf{d} \right) \longrightarrow$$

Nonlinear inverse problems

Some final words about scaling:

- lacktriangle so far only large 2D example ($4e6\,$ model parameters, $2.5e9\,$ data points)
- lacktriangle large 3D problems have 2e8 model parameters, 1e12 data points (or more)

For large-scale 3D inverse problems:

- ▶ bounded by RAM, need to store the forward wavefields for all experiments
- with stochastic optimization methods (linearized Bregman etc.), reduce number of experiments per iteration
- ▶ 3D becomes feasible, if working with few, but "large" nodes (RAM > 1 TB)

Conclusions

Julia framework for seismic modeling and inversion

- modular software structure
- matrix-free linear operators and seismic data containers
- efficient and fast PDE solves through Devito
- scales to very large and realistic problem sizes
- parallel framework, resilience to hardware failures
- easy to formulate algorithms, objective functions + gradients, etc.
- easy to interface optimization libraries

Outlook

In the future we plan to:

- test our framework in the cloud
- ▶ add IO functions for seismic data (automatic set up of data containers + geometry)
- ▶ application to 3D seismic field data sets (requires nodes with ~ TB RAM)

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

