Philipp A.Witte, Mathias Louboutin and Felix |. Herrmann

SLM@

University of British Columbia



Motivation

Use Geophysics to understand the earth

» obtain information about the earth from surface seismic experiments

source recelvers

TSI
=z




Motivation

Use Geophysics to understand the earth

» invert for subsurface parameters, e.g. velocity, density, porosity

0 3) 10 15 20
Lateral position [km]

14.5

Velocity [km/s]




Motivation

Use Geophysics to understand the earth

» image geological interfaces (perturbations of earth parameters)

0.2

==

10.15

0.1

0.05

o

Perturbation [km/s]

-0.05

-0.1

-0.15

-0.2

Lateral position [km]



Motivation

Formulate inverse problems and use numerical optimization

» invert for velocity == nonlinear least squares optimization problem

minimize %H A(m)_l .q — d| ‘g (Virieux and Operto, 2009)
1041

» image the subsurface == linear least squares optimization problem

1
minimize =||J-Jdm — dd ‘g (Dong et al., 2012)
om 2

Need:

» access to objective function values and gradients

» matrices A(m), J, or actions of these matrices on vectors



Motivation

Challenges:

» problem sizes are huge:

- seismic surveys consist of tens of thousands of individual experiments

model wave propagation over thousands of time steps in large domains

- typical size of modeling matrix: A(m) € R"*" n = 1el6

» model physical system == data is irregular, has coordinates and meta data

» inverse problems are difficult to solve (ill-posed, non-convex, non-unique)

» software to solve seismic inverse problems:

needs to be fast and handle large amounts of data

often tailored towards a specific application

difficult to maintain and modify, often slow adaptation of new concepts
iterative imaging algorithms rely on using all the data in each iteration




Motivation

Our goal:
» flexible framework for solving seismic inverse problems
» abstract matrices and vectors to easily formulate algorithms
» data containers for irregular seismic data
» robust parallel framework that scales on HPC environments/the cloud
» interface Devito (finite difference DSL) to solve PDEs

» framework that can handle actual 3D industry-sized problems

- lower computational costs using stochastic optimization




The forward problem

Solve (acoustic) wave equation for a given model

» continuous form

m: model parameters (slowness squared)
M —1 — VQU — S u : wave fields
s : source wave fields

» discretize and rewrite as linear system

A -u=s

\ A is lower triangular, solve with forward elimination



The forward problem

Model surface recorded seismic data

d=P,-F.-P .q

amplitude

F:=A(m)*

P, receiver restriction

T L
P, : source injection

g : source wavelet

o
o

o

o
o

\

v

o

0.5 1
time [s]

1.5




The forward problem

Model surface recorded seismic data (2 experiments)

d=P,-F.-P .q

.

X X
.

» can barely store d (1ell x 1)

» cannotstore P, -q (lel6 x 1)

» cannotform F,P,., P, explicitly (1el6 x 1el6)



The forward problem

Adapt idea of matrix-free linear operators

» SPOT - a linear operator toolbox in Matlab  (van den Berg and Friedlander, 2012)
» operators look and behave like explicit matrices
» matrix “knows” how to apply itself to vectors

» forward, adjoint matrix-matrix, matrix-vector products etc.

>> n = le3;
>> % Set up operator
>> F = opDFT(n)
F =
Spot operator: DFT(1000,1000)
rows: 1000 complex: yes

cols: 1000 type: DFT
>> % FFT
>> y = F*x;
>> % 1FFT
>> z = F'*y;




The forward problem

Implement abstract linear operators and vectors in Julia
> JOLI - Julia Operator Library

16

17 type joData <: JoliVector
18 m: :Integer

19 geometry: : Geometry

20 data: :Array{Any,1}

21

10 type joProjection <: JoliOperator
11 m: :Integer

12 n::Integer

13 info: :Info

14 geometry: : Geometry

15




The forward problem

Solve forward wave equation:

d = Pr*F*Ps'*q
From worker 5: Nonlinear forward modeling (source no. 2)
From worker 4: Nonlinear forward modeling (source no. 3)
From worker 3: Nonlinear forward modeling (source no. 4)
From worker 2: Nonlinear forward modeling (source no. 1)

CustomCompiler: compiled /tmp/pwittCT5MeP/devito-4080/3443b8b1660866d91815a00df85b3abcceed7ed9.
CustomCompiler: compiled /tmp/pwittCT5MeP/devito-4080/83f4ea5a3ee3ebflc51e1243816b457¢c431b50c7.
CustomCompiler: compiled /tmp/pwittCT5MeP/devito-4080/415a7b8d@cf2663d3c552655b56bf924e343a30f.
CustomCompiler: compiled /tmp/pwittCT5MeP/devito-4080/8ac99a871f7a68ef619460c7a5cdcfblf2e58dd3.
(TimeModeling. joData{Float32},"Julia seismic data container",161555,1)

Solve adjoint wave equation: JIT compilation

q = Ps*F'*Pr'*d
From worker 4: Nonlinear adjoint modeling (source no. 4)
From worker 3: Nonlinear adjoint modeling (source no. 3)
From worker 2: Nonlinear adjoint modeling (source no. 2)
From worker 5: Nonlinear adjoint modeling (source no. 1)

CustomCompiler: compiled /tmp/pwittCT5MeP/devito-4080/f43d668c3bca252a307act2dbe@c51417a8a6101.
CustomCompiler: compiled /tmp/pwittCTS5MeP/devito-4080/a0dbc@f7d088b2073dadeb15929a7347e244d417.
CustomCompiler: compiled /tmp/pwittCT5MeP/devito-4080/87d901287ff2ce@8855dde4cO@8fa9e825b5b1562.
CustomCompiler: compiled /tmp/pwittCT5MeP/devito-4080/3d1cb82e3ac5101999869dee3c5af80@6adeddSab.
(TimeModeling. joData{Float32},"Julia seismic data container",1971,1)




__ Software design

What happens after executing the modeling command?

d = Pr*F*Ps'*q

» check that dimensions are correct
> check that geometries match

time_modeling(model,srcGeometry,srcData, recGeometry,recData,'F',1)

> call serial/parallel modeling function
> set function arguments with parameters from linear operators




Software design

linear operators, data containers, objective functions

Julia parallel modeling function

parallelization: distribute sources, data

l serial modeling function
Ito

interface to Devito (Python)
l call code l T return results

set up PDEs, discretization generate code solve PDE

generate code + JIT compilation

Python




Software design

linear operators, data containers, objective functions

Julia paraIIeI modeling function

parallelization: distribute sources, data

serial modeling function

completely automatic:
> N0 manual discretization

> no implementation of long stencils
| > optimal stencils for current hardware " interface to Devito (Python)
- call code l T return results

set up PDEs, discretization generate code

solve PDE

generate code + JIT compilation




The inverse problem

Inverse problem

» invert model for given data

» how does a perturbation in the model relate to a perturbation in the wave field?

(A(m)_l : q) e | (Jacobian) (Virieux and Operto, 2009)

» including source/receiver projections:

- OA(m)

om

J=-P,-A(m)! A(m)™" P/ -q



The inverse problem

Depth [km]
O
6]

—h

1.5

0.5 1

20 40 60 80 100 120 140
Lateral position [km]

Receiver number

Perturbation w.r.t background model Surface recorded seismic data




The inverse problem

0.08

0.06

o
o

0.04

J-om
ﬁ

“modeling”

0.02

Depth [km]
Time [s]

-0.02

-0.04

-0.06

-0.08

1.5

0.5 1 . - 20 40 60 80 100 120 140
Lateral position [km] Receiver number

0.08

0.06

0.04

J'-od
h

(:

imaging”

0.02

Time [s]

Depth [km]

-0.02

-0.04

-0.06

-0.08

0 0.5 1 1.5 20 40 60 80 100 120 140
Lateral position [km] Receiver number




Linear inverse problems: seismic imaging

Seismic imaging as a linear least squares problem (Dong et al., 2012)
» objective function: 1
minimize 5\\ J-om—dod|? (JER™™ m>lell,n > 1e9)

» easy to implement a solver using JOLI operators:




Seismic least squares imaging

Seismic imaging as a linear least squares problem

» J isill-conditioned and very large, can only afford 10s of iterations, need to save 1i[t]| (~TB)
» reduce computational cost using techniques from stochastic optimization

» linearized Bregman method (Yin, 2010)

mimize  Allx||s + -
minimize X —
om ! 2
subject to: || A-x —Dblls <o

|x||3 ) : thresholding parameter
o : noise level

» designed for compressive sensing problems with A € R™*"™ m << n

» related to sparse (block-) Kaczmarz solver for problems w/any A € R™*™ (Lorenzetal., 2014)



Seismic least squares imaging

Linearized Bregman method for least squares imaging:

1
minimize A||C - dml|; + §HC - om||3 C: Curvelet transform

om

A : thresholding parameter

subject to: || J-dm —dd||s < o .
o : hoise level

» in each iteration possible to work w/ subset of rows of J, od

JSU,b X X = dsub

FHEEEEEEE E H

* :Ecd —

only subsets of experiments in each iteration




Seismic least squares imaging

Linearized Bregman method for least squares imaging:

» Algorithm (Lorenzetal., 2014)

1. for £k =0,1,---
_ T >
2. Zij11 — Zk_tk']r(k) (Jr(k)Xk—(Sdr(k))-maX(O, 1 ||jr(k)xk_br(k)||2)
3. xp1+1 = C*SA\(Czgy1)
4. end for

» r(k) is sequence of subsampled experiments (cyclic or random)

» instead of “touching” full data set in each iteration, only touch every data sample
one or twice

» calculate gradients on a few large nodes (TB RAM) rather than many small ones




Seismic least squares imaging

Example with model from the introduction:
» large 2D model (4e6 grid points)

» 1000 surface seismic experiments ( 2.5¢9 data points)

» 20 iterations w/ 100 experiments per iteration (4000 PDE solves)

SP-LSRTM

Depth [km]

0 5 10 15 20
Lateral position [km]




Nonlinear inverse problems

Objective functions for nonlinear inverse problems

» functions that spin off function values and gradients

» can be passed to black-box optimization libraries (e.g. NLopt, JuMP)

Example: invert for velocity model (full waveform inversion)

» nonlinear least squares problem

1
minimize §H Pr-Am) "-P) -q—d|3

» gradient given by

g:JT(PrA(m)—lpgq_d>——) if,g

fwi_objective(m,dobs,q)




Nonlinear inverse problems

Some final words about scaling:

» so far only large 2D example (4e6 model parameters, 2.5e€9 data points)

» large 3D problems have 2e8 model parameters, 1e12 data points (or more)

For large-scale 3D inverse problems:

» bounded by RAM, need to store the forward wavefields for all experiments

» with stochastic optimization methods (linearized Bregman etc.), reduce number
of experiments per iteration

» 3D becomes feasible, if working with few, but “large” nodes (RAM > 1 TB)




Conclusions

Julia framework for seismic modeling and inversion
» modular software structure
» matrix-free linear operators and seismic data containers
» efficient and fast PDE solves through Devito
» scales to very large and realistic problem sizes
» parallel framework, resilience to hardware failures
» easy to formulate algorithms, objective functions + gradients, etc.

» easy to interface optimization libraries




_ Outlook

In the future we plan to:

» test our framework in the cloud

» add IO functions for seismic data (automatic set up of data containers +
geometry)

» application to 3D seismic field data sets (requires nodes with ~ TB RAM)




Acknowledgements

This research was carried out as part of the SINBAD project with the
support of the member organizations of the SINBAD Consortium.



